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AbshcL A new integrable model of a strongly mrrelated electronic system is formulated 
as a model of hole supermnductiviry. The model is solved ty using the Bethe ansatz. 
The critical exponents describing the decrease of mrrelation functions on long distances 
are derived. The behaviour of these mrrelations indicates that Cooper pain of holes are 
formed in the repulsive region of the model. llis mnclusion is also mnfirmed by the 
calculation of the mnductivity and the effective trampon mas. In the attractive region, 
the model is a highly conducting system in which the current camers with small effective 
mass are 'light fermions'. 

1. Introduction 

The discovery of high-temperature superconductivity [l] has greatly stimulated the 
interest in lowdimensional electronic systems with strong correlations. Among the 
relevant models the onedimensional Hubbard [Z] and the (supersymmetric) d-J 
models [3-71 are special since they can be treated exactly in terms of the Bethe 
ansatz As exact results are highly desirable, particularly for low-dimensional systems 
in the strong correlation regime, these models have been extensively studied. The 
physical motivation for considering the Hubbard and the t-J model is the fact that 
the motion of electrons is strongly influenced by the on-site Coulomb repulsion and 
by the spin fluctuations through antiferromagnetic coupling, respectively. 

Another approach to high-temperature superconductivity proposed by Husch [S, 91 
makes it possible to formulate a new integrable model of strongly correlated systems. 
According to [9] the charge carriers of high-temperature superconductors are holes. 
The kinetic energy of hole hopping between nearest-neighbour sites depends on the 
occupation of these sites. In such a model the repulsive Coulomb interaction for 
electrons leads to an attractive interaction for holes which is strongest at low densities 
of holes. 

In the following we shall consider a simplified version of Hirsch's model on 
a one-dimensional chain of even length L, closed periodically. It is given by the 
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Hamiltonian 

R Z B a r b  ef a1 

L 

H ( t )  = -E E (C:uCjtlu t C,ttl,Cj,)(~ f fnj+(ltu)/z,-u) (1) 
j=l u&l 

with interaction parameter t ,  where cju is the annihilation operator for an electron 
with spin U at site j and nj, = cfucju. For comparison we present the Hamiltonian 
fi of the original Hirsch model [9] 

L 

fi = -E E (c:ecjtlu + c:+lucju)[l+ i t (n j+ ( l+o) / z , -u  + nj+(l-o)/2,-u)I. 
j=1 <=&I 

(2) 
Obviously our Hamiltonian (1) only contains half of the interaction terms of H. The 
advantage of model (1) is that it is solvable by the Bethe ansatz whereas model (2) is 
not, as a direct calculation shows that its S-matrix does not satisfy the Yang-Baxter 
equations [lo, 111. These are satisfied for I? only in the continuum limit, i.e. in the 
Limit of low or high densities of particles. The last case is the most important one 
from the physical point of view, because here the existence of hole pairs of Cooper 
type can be expected. A direct comparison of the S-matrices of Hamiltonians (1) 
and (2) shows that the continuum versions of both models coincide. Therefore it can 
be expected that both models have identical critical properties. Nevertheless a proof 
of this claim, based for instance on the renormalization group approach, is highly 
desirable. 

In any case, model (1) keeps the main idea of Hirsch's approach to 
superconductivity, namely the modulation of the hopping process by the presence of 
other particles as the main reason for superconductivity. Hamiltonian (1) includes the 
simplest form of terms describing such processes. The various arguments to support 
the possibility that such terms could overwhelm the direct Coulomb repulsion and 
may lead to superconductivity have been given in [S, 91. This is reason enough to study 
the superconducting properties of model (1). In [12] another model for interacting 
fermions including correlated hopping terms was constructed. The ground state of 
this system can be given explicitly in any dimension, in one dimension the system is 
integrable. The model of [12] and (1) are related, the latter one however enjoys a 
simpler physical interpretation. 

In [13] one of the authors has shown that model (1) is solvable by using the 
Bethe ansatz. The relevant equations have been derived and the ground-state energy 
has been calculated. In the present paper we shall mainly consider the correlation 
functions of the model in order to investigate the possibility of superconductivity. 

As a model for electrons the interaction term in (1) should be negative, ie. t < 0, 
corresponding to Coulomb repulsion. If, according to [9] this leads to an attraction 
of holes, this fact must be seen in the behaviour of the hole correlation functions. 
The corresponding Hamiltonian for holes is obtained from (1) by a particle-hole 
transformation U together with a sublattice rotation [14], namely cTu + (-l)jcju. 

Multiplying also with a suitable scale factor, (1 t $ ) - I ,  the resulting hole Hamiltonian 
H ( t ' )  

t t' = -- 
l + t  

H(d')  = (1 t f ) - ' U H ( f ) U - '  (3) 
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is then of the same form as (1). Now, however, the l'-interaction is positive. As 
a consequence we shall study model (I) with attractive interaction, i.e. with t > 0, 
regarding its correlation functions as hole correlation functions of the repulsive model. 

2. The Bethe ansatz 

The Bethe ansatz for the model has been formulated in [13], from which we quote the 
relevant equations. The energy eigenstates are characterized by sets of wave numbers 
k j  for the particles and additional parameters A,. Each of the latter ones is related 
to a particle with down spin. The Bethe ansatz wave numbers kj  and A, satisfy a 
set of nonlinear equations derived in [13] 

M 

Lkj = 2nIj + 0 ( k j  - A p ;  5) 
p=1 

j =  1, ..., N 

N M 

@=1 

CO (AQ - k . ; - )  II -Z@(A, - A @ ; q ) , =  ZrJ ,  a = 1 ,..., M 
1 2  

j =I 

(4) 

with the phase shift hmction 

O ( k ; q )  =2tan-*(cothqtanik) - I r < O < r  (5) 

and the interaction parameter q = In( 1 + t ) .  Furthermore N is the total number of 
particles, M is the number of particles with down spin, and I j  and J ,  are integers or 
half-odd integers depending on the parities of N and M. The energy and momentum 
of the corresponding state are given by 

N 
1. 

E = - c2cos kj  -k p N  
j=1 

where, from now on, the chemical potential p has been added to control the particle 
number. 

Equations (4) and (6) hold regardless of the sign of q, nevertheless the structure 
of the solutions is ve'y different for q < 0 and q > 0. In [13] the model was 
considered for q < 0. Here we treat (4) for positive q in the symmetric case when 
there are equally many particles with spin up and spin down (M = N / 2 ) .  The 
eigenstates consist of a certain number of singlet bound pairs and a certain number 
of free particles. The bound pairs are characterized by pairs of complex wavenumbers 
k* 

k i  = AQ iq. (7) 
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In the ground state we only have pairs. Using (7) the above equations are reduced 
to the following set of equations after some simple algebra 

M 
2LA,  = 2 s J ,  + @(A, - A p ; q )  

p=1 

M 
P = 2 c A , .  

,=l 

The ground state is characterized by the following d u e s  of J,  

J: = a - ( M  -t 1 ) / 2  (0  = 1 , 2 , .  . . , M ) .  (9) 

Deviations from this distribution of J ,  describe gapless excitations of particle-hole 
type. In the thermodynamic limit L 3 00, M -+ 00 for fixed ratio M I L  the values of 
A, fill an interval [-A,,A,] uniformly with density .(A). From (8) we then obtain 
the integral equation for the distribution function o ( A )  

with the subsidiary condition 

where 2p = 2 M / L  is the density of the hole liquid. For k e d  chemical potential the 
parameter A, must be chosen to minimize the ground-state energy, given by 

where in the second representation the dressed energy € ( A )  has been used which is 
the solution of the integral equation 

such that c(&A,) = 0 which is the minimization condition. The solution of (13) also 
defines the energy of particle-hole excitations. The momentum of such an excitation 
is given by 
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The only other type of excitation consists of broken pairs. "he breaking-up of one 
bound pair leads to the creation of two free particles. The energies and momenta of 
these particles are obtained from (4) and (6), for instance in the case when there are 
M - 1 bound pairs and two particles with real momenta k,,*. The energy of each 
free particle with momentum k is given by 

We content ourselves with pointing out that this excitation has a gap at k = 0. A 
detailed study of this type of excitations for a more general model will be presented 

In order to study the ground-state correlations of the model, we use two different 
approaches. First, following [16,17], we calculate the critical exponents and determine 
the long-distance behaviour of the two-point correlation functions. Secondly, we 
investigate the conductivity of the model as a function of the particle density. 
This approach is based on the calculation of the gound-state energy under twisted 
boundaly conditions [18,19]. 

in [lq. 

3. Critical exponents of the mrrelation functions 

'RI obtain the critical exponents of the correlation functions we use the predictions 
of conformal field theory [20,21]. According to this theory there is a one-to-one 
correspondence between the conformal dimensions of the scaling operators and the 
mite-size corrections to the energy of the excited states of the critical Hamiltonian. 
Our model is critical since the gapless excitations have a linear dispersion law in 
the vicinity of the Fermi points. The excitations corresponding to the breaking-up 
of bound pairs have a gap as mentioned before. These excitations do not affect the 
critical properties and the finite-size corrections The mite-size corrections to the 
gapless excitations (11) can be calculated ,in a straightfonvard way [2& U]. Omitting 
the details of the calculation, we only present the results. 

We denote the change of the number of bound pairs as A M  and the number of 
pairs moved from the left to the right Fermi point as d. The l/l-corrections to the 
low-energy excitations are then 

where [(Ao) is the dressed charge [24] at the Fermi surface, the dressed charge 
function [(A) being defined through the modified integral equation (9) 

such that [ 5 TC in the present case. vF is the Fermi velocity 
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FIgurr 1. Depiction of he a p n e n t  p of lhe 
pair “elation function for Merent MIU~S of the 
interaction parameter 7 = 0.1, 0.5, 1, 10. 

The non-negative integers N* are quantum numbers of the simple particle-hole 
excitations. The momentum associated with these excitations is 

(19) 
2x M 
L P =  2 k ~ d t  - ( d A M  + Nt - N - )  kF = “7. 

’I3 read off the conformal dimensions A, from these expressions one has to compare 
(16) and (19) with the predictions of conformal field theory [25,26]. Then we have 

We notice that in contrast to the repulsive case [27J this formula is valid for integer d 
without selection rule for fermions, since in the present case it corresponds to bound 
pairs. It is a reason why we consider the particle correlation function of the model 
with an attractive interaction as a hole correlation function in the repulsive case. 

Now we consider the longdistance behaviour of correlation functions. The 
asymptotic form of the density correlation function is given by 

(p( r)p(O)) N pz + A,r-’ + AZr-* cos(2kFr) .  (21) 
The non-oscillating part arises from the lowest particle-hole excitations. The relevant 
excitation for the 2kF oscillation term is ( A M ,  d ,  N * )  = (O, l ,O) .  We thus find the 
critical exponent 

a = 2 ( A t  + A - )  = 2[E(AU)l2.  (22) 
The excitations relevant for the correlation function of singlet pairs are specified 
by ( A M , d ,  N * )  = ( l , O , O ) .  We then obtain the asymptotic behaviour of this 
correlation 

where 

The exponent @ is plotted in figure 1 for same values of the interaction parameter 0 
by numerically solving equations (lo), (11) or (17), respectively, from which E(Au) is 
determined. 
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Let us discuss the results. In one-dimensional systems we have no 
superconductivity in the literal sense. However, the power-decay of the singlet pair 
correlation (23) indicates the existence of singlet pairs provided that the exponent 
p of this correlation is smaller than that of the densityaensity correlation Q [lq. 
In this case the correlation of singlet pairs wenvhelms the density correlation, and 
we can say that the particles are confined in pairs. From figure 1 we see that such 
behaviour always exists for particle concentrations p < pc. The critical concentration 
pc is defined by p(p,) = 1 and varies monotonically from 112 to 2 - f i  = 0.5858.. . 
with increasing interaction q.  

We remark that these results for the model with attractive interaction can be 
applied to the model with repulsive interaction by a particle-hole transfonnation. 
Therefore we have Cooper type singlet pairs of holes in the model of repulsive 
electrons. 

4. Conductivity and effective transport mass 

In order to substantiate the physical picture given above we now study the conductivity 
and the effective transport masses which can be calculated following the ideas of 
[B, 191. lb this end we change the periodic boundary condition leading to (8) by a 
twisted one with twisting angle 'p. In this case instead of (8) we obtain 

M 
2LAe = 2xI ,  + 2 p +  c O ( A ,  - A p ; q ) .  

p=1 

Physically the additional phase p can be obtained by enclosing a magnetic flux in 
the ring on which the electrons can move. For small 'p this leads to a change in the 
ground-state energy 

AEu = D , p 2 / L  (26) 

where D, is the charge stiffness. The conductivity of the system is directly 
proportional to D, [18,19]. In order to see the correlation effects clearly it is useful 
to introduce the effective transport mass m defined by the relation 

where 0: = sin(xp) is the charge stiffness of the non-interacting system and me 
is the electron mass. On the other hand this change in the boundary conditions 
corresponds to the finite-size correction (16) for AM = 0, d = 'p/n and we have 
for the charge stiffness of the Hamiltonian (1) with attractive interactions (t > 0) 
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P P 

Feure 2 Dependence of charge stiffness D? and 
effective transpon mass m> on p for different 
interactions r) = 0.1, 0.5, 1, 2 Note that p is 
lhe density of particles in the attractive model. 

d ::IF/ 
> L.0 ,... ...... . ...... ................................... 
E 

.5  

Qure 3. Depiction of charge stiffnness Dd and 
effective transport mass m< after rescaling using 
(29). Note h a t  m this repulsive case p is the 
density of holes. 

and with repulsive interactions (t < 0) 

0: = e-": = %p,$z(Au)e-q. 7r (29) 

The result (29) can also be obtained by using results of [27 where the repulsive model 
has been investigated directly. In figures 2 and 3 we present the conductivity and 
effective transport mass as a function of the particle concentration for the Hamiltonian 
(1) with attractive and repulsive interactions, respectively. 

We begin with the discussion of the conductivity of the repulsive model. From 
figure 3 it is clear that the conductivity in the high-density limit vanishes linearly as 
the concentration decreases (02 - 1 - p). This is simply due to the decrease of 
the camer density just as for the non-interacting case. It indicates that in this region 
the current carriers are the free electrons of the repulsive model. It is noteworthy 
that in the low-density limit the effective mass is enhanced by a factor of two. This 
behaviour and our previous findings for the correlation functions can be interpreted 
as the formation of hole pairs due to an attractive force between holes. 

In the high-density limit of the attractive model we also observe a linear decrease 
Dz - 1 - p (figure 2). In this case the free particles which carry the current 
are holes. For all densities p and interactions q the effective masses are reduced 
in comparison to the non-interacting case. Furthermore the masses decrcase with 

~ 
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increasing interaction parameter 1 ("/me - t-'). As the effective mass of the 
current carriers becomc very small, one may call them 'light fermions'. 
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